Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Heliyon ; 10(7): e28320, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38586362

RESUMO

Background and objective: The leaky gut syndrome is characterized by an intestinal hyperpermeability observed in multiple chronic disorders. Alterations of the gut barrier are associated with translocation of bacterial components increasing inflammation, oxidative stress and eventually dysfunctions of cellular interactions at the origin pathologies. Therapeutic and/or preventive approaches have to focus on the identification of novel targets to improve gut homeostasis. In this context, this study aims to identify the role of PERMEAPROTECT + TOLERANE©, known as PERMEA, a food complement composed of a combination of factors (including l-Glutamine) known to improve gut physiology. Methods: We tested the effects of PERMEA or l-Glutamine alone (as reference) on gut permeability (FITC dextran method, expression of tight junctions) and its inflammatory/oxidative consequences (cytokines and redox assays, RT-qPCR) in a co-culture of human cells (peripheral blood mononuclear cells and intestinal epithelial cells) challenged with TNFα. Results: PERMEA prevented intestinal hyperpermeability induced by inflammation. This was linked with its antioxidant and immunomodulatory properties showing a better efficacity than l-Glutamine alone on several parameters including permeability, global antioxidant charge and production of cytokines. Conclusion: PERMEA is more efficient to restore intestinal physiology, reinforcing the concept that combination of food constituents could be used to prevent the development of numerous diseases.

2.
Nat Aging ; 4(1): 80-94, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38238601

RESUMO

Skeletal muscle plays a central role in the regulation of systemic metabolism during lifespan. With aging, this function is perturbed, initiating multiple chronic diseases. Our knowledge of mechanisms responsible for this decline is limited. Glycerophosphocholine phosphodiesterase 1 (Gpcpd1) is a highly abundant muscle enzyme that hydrolyzes glycerophosphocholine (GPC). The physiological functions of Gpcpd1 remain largely unknown. Here we show, in mice, that the Gpcpd1-GPC metabolic pathway is perturbed in aged muscles. Further, muscle-specific, but not liver- or fat-specific, inactivation of Gpcpd1 resulted in severely impaired glucose metabolism. Western-type diets markedly worsened this condition. Mechanistically, Gpcpd1 muscle deficiency resulted in accumulation of GPC, causing an 'aged-like' transcriptomic signature and impaired insulin signaling in young Gpcpd1-deficient muscles. Finally, we report that the muscle GPC levels are markedly altered in both aged humans and patients with type 2 diabetes, displaying a high positive correlation between GPC levels and chronological age. Our findings reveal that the muscle GPCPD1-GPC metabolic pathway has an important role in the regulation of glucose homeostasis and that it is impaired during aging, which may contribute to glucose intolerance in aging.


Assuntos
Diabetes Mellitus Tipo 2 , Glucose , Glicerilfosforilcolina , Fosfolipases , Idoso , Animais , Humanos , Camundongos , Envelhecimento/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Redes e Vias Metabólicas , Músculo Esquelético/metabolismo , Fosfolipases/metabolismo , Glicerilfosforilcolina/metabolismo
3.
Int J Food Sci Nutr ; 75(1): 58-69, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37921224

RESUMO

Gut microbiota is implicated in the control of host physiology by releasing bioactive actors that could exert a direct or indirect effect on tissue. A dysfunction of the gut microbiota to tissue axis could participate in the development of pathological states such as obesity and diabetes. The aim of this study was to identify the metabolic effect of Limosilactobacillus reuteri (known as Lactobacillus reuteri) BIO7251 (L. reuteri BIO7251) isolated from Corsican clementine orange. Body weight gain, adiposity, glucose tolerance, glucose absorption and food intake were measured in mice fed a high-fat diet in response to a preventive oral administration of L. reuteri BIO7251. This strain of bacteria exerts a beneficial effect on body weight gain by decreasing the subcutaneous adipose tissue mass. The treatment with L. reuteri BIO7251 decreases glucose absorption and food intake in obese/diabetic mice. L. reuteri BIO7251 could be tested as new probiotic strain that could manage body weight during obesity.

4.
Commun Biol ; 6(1): 1168, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37968381

RESUMO

Opioid-dependent immune-mediated analgesic effects have been broadly reported upon inflammation. In preclinical mouse models of intestinal inflammatory diseases, the local release of enkephalins (endogenous opioids) by colitogenic T lymphocytes alleviate inflammation-induced pain by down-modulating gut-innervating nociceptor activation in periphery. In this study, we wondered whether this immune cell-derived enkephalin-mediated regulation of the nociceptor activity also operates under steady state conditions. Here, we show that chimeric mice engrafted with enkephalin-deficient bone marrow cells exhibit not only visceral hypersensitivity but also an increase in both epithelial paracellular and transcellular permeability, an alteration of the microbial topography resulting in increased bacteria-epithelium interactions and a higher frequency of IgA-producing plasma cells in Peyer's patches. All these alterations of the intestinal homeostasis are associated with an anxiety-like behavior despite the absence of an overt inflammation as observed in patients with irritable bowel syndrome. Thus, our results show that immune cell-derived enkephalins play a pivotal role in maintaining gut homeostasis and normal behavior in mice. Because a defect in the mucosal opioid system remarkably mimics some major clinical symptoms of the irritable bowel syndrome, its identification might help to stratify subgroups of patients.


Assuntos
Síndrome do Intestino Irritável , Humanos , Animais , Camundongos , Analgésicos Opioides , Encefalinas/genética , Inflamação , Dor
5.
Nutrients ; 15(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37764826

RESUMO

BACKGROUND: Human milk banks (HMBs) provide sterilized donor milk (DM) for the feeding of preterm infants. Most HMBs use the standard method of Holder pasteurization (HoP) performed by heating DM at 62.5 °C for 30 min. High hydrostatic pressure (HHP) processing has been proposed as an alternative to HoP. This study aims to evaluate intestinal barrier integrity and microbiota composition in adult mice subjected to a chronic oral administration of HoP- or HHP-DM. METHODS: Mice were treated by daily gavages with HoP- or HHP-DM over seven days. Intestinal barrier integrity was assessed through in vivo 4 kDa FITC-dextran permeability assay and mRNA expression of several tight junctions and mucins in ileum and colon. Cecal short chain fatty acids (SCFAs) and microbiota were analyzed. RESULTS: HHP-DM mice displayed decreased intestinal permeability to FITC-dextran and increased ileal mRNA expression levels of two tight junctions (Ocln and Cdh1) and Muc2. In the colon, mRNA expression levels of two tight junctions (Cdh1 and Tjp1) and of two mucins (Muc2 and Muc4) were decreased in HHP-DM mice. Cecal SCFAs and microbiota were not different between groups. CONCLUSIONS: HHP processing of DM reinforces intestinal barrier integrity in vivo without affecting gut microbiota and SCFAs production. This study reinforces previous findings showing that DM sterilization through HHP might be beneficial for the intestinal maturation of preterm infants compared with the use of HoP for the treatment of DM.


Assuntos
Pasteurização , Recém-Nascido , Adulto , Lactente , Humanos , Animais , Camundongos , Leite Humano , Pressão Hidrostática , Recém-Nascido Prematuro , Esterilização , RNA Mensageiro
6.
Heliyon ; 9(7): e18196, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37501991

RESUMO

Background and objective: Pasteurized Akkermansia muciniphila cells have shown anti-diabetic effects in rodents and human. Although, its primary site of action consists in maintaining the gut barrier function, there are no study exploring if A. muciniphila controls glycemia via a gut to brain axis. Targeting the gut motility represents an alternative pathway to treat hyperglycemia. Here, we tested the impact of pasteurized A. muciniphila on gut motility, gut-brain axis and glucose metabolism. Methods: We used mice fed a 45% high-fat (HFD) treated or not with pasteurized A. muciniphila MucT during 12 weeks. We measured the effects of the treatment on body weight gain, glucose metabolism (insulin, glycemia, glucose tolerance), gut contraction and enteric neurotransmitter release, and hypothalamic nitric oxide (NO) release. Results: We show that pasteurized A. muciniphila exerts positive effects on different metabolic parameters such as body weight, fat mass, insulin, glycemia and glucose tolerance. This could be explained by the ability of pasteurized A. muciniphila supplementation to decrease duodenal contraction and to increase hypothalamic NO release in HFD mice. Conclusion: We demonstrate a novel mode of action of pasteurized A. muciniphila explaining its beneficial impact on the control of glycemia in a preclinical model of type 2 diabetes via gut-brain axis signaling.

8.
Nat Metab ; 5(3): 495-515, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36941451

RESUMO

Muscle degeneration is the most prevalent cause for frailty and dependency in inherited diseases and ageing. Elucidation of pathophysiological mechanisms, as well as effective treatments for muscle diseases, represents an important goal in improving human health. Here, we show that the lipid synthesis enzyme phosphatidylethanolamine cytidyltransferase (PCYT2/ECT) is critical to muscle health. Human deficiency in PCYT2 causes a severe disease with failure to thrive and progressive weakness. pcyt2-mutant zebrafish and muscle-specific Pcyt2-knockout mice recapitulate the participant phenotypes, with failure to thrive, progressive muscle weakness and accelerated ageing. Mechanistically, muscle Pcyt2 deficiency affects cellular bioenergetics and membrane lipid bilayer structure and stability. PCYT2 activity declines in ageing muscles of mice and humans, and adeno-associated virus-based delivery of PCYT2 ameliorates muscle weakness in Pcyt2-knockout and old mice, offering a therapy for individuals with a rare disease and muscle ageing. Thus, PCYT2 plays a fundamental and conserved role in vertebrate muscle health, linking PCYT2 and PCYT2-synthesized lipids to severe muscle dystrophy and ageing.


Assuntos
Insuficiência de Crescimento , RNA Nucleotidiltransferases , Animais , Humanos , Camundongos , Camundongos Knockout , Debilidade Muscular/genética , Músculos , RNA Nucleotidiltransferases/química , RNA Nucleotidiltransferases/genética , Peixe-Zebra
10.
Mol Cell Endocrinol ; 557: 111752, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35973528

RESUMO

Hypothalamic control of reproduction relies on GnRH and kisspeptin (KP) secretions. KP neurons are sensitive to sex steroids and metabolic status and their distribution overlaps with neurons producing apelin, a metabolic hormone known to decrease LH secretion in rats. Here, we observed neuroanatomical contacts between apelin fibers and both KP and GnRH neurons in the hypothalamus of male rodents. Intracerebroventricular apelin infusion for 2 weeks in male mice did not decrease LH levels nor did it affect gene expression for KP, neurokinin B and dynorphin. Finally, increasing apelin concentrations did not modulate Ca2+ levels of cultured GnRH neurons, while 10 µM apelin infusion on forskolin pretreated GnRH neurons revoked a rhythmic activity in 18% of GnRH neurons. These results suggest that acute apelin effect on LH secretion does not involve modulation of gene expression in KP neurons but may affect the secretory activity of GnRH neurons.


Assuntos
Hormônio Liberador de Gonadotropina , Neurocinina B , Animais , Apelina , Receptores de Apelina , Núcleo Arqueado do Hipotálamo/metabolismo , Colforsina/farmacologia , Dinorfinas/genética , Hormônio Liberador de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Hormônio Luteinizante/metabolismo , Hormônio Luteinizante/farmacologia , Masculino , Camundongos , Neurocinina B/genética , Neurônios/metabolismo , Ratos , Esteroides/metabolismo
11.
Antioxidants (Basel) ; 11(6)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35739988

RESUMO

Preterm infants are highly susceptible to oxidative stress due to an imbalance between endogenous oxidant and antioxidant systems. In addition, these newborns are frequently fed with donor milk (DM) treated by Holder pasteurization (HoP) at 62.5 °C for 30 min, which is known to alter numerous heat-sensitive factors, including some antioxidants. High hydrostatic pressure (HHP) processing was recently proposed as an innovative method for the treatment of DM. The present study aimed to measure the redox balance of HoP- and HHP-DM and to study, in vivo, the effects of HoP- and HHP-DM on the gut and liver. H2O2, vitamin A and vitamin E (α- and γ-tocopherols) concentrations, as well as the total antioxidant capacity (TAC), were measured in raw-, HoP- and HHP-DM. The gene expression level of antioxidant systems and inflammatory response were quantified in the ileum and liver of adult mice after 7 days of oral administration of HoP- or HHP-DM. HoP reduced the γ-tocopherol level, whereas HHP treatment preserved all vitamins close to the raw milk level. The milk H2O2 content was reduced by HHP but not by HoP. The total antioxidant capacity of DM was reduced after HHP processing measured by PAOT-Liquid® technology but was unaffected after measurement by ORAC assay. In mice, HHP-DM administration induced a stimulation of antioxidant defenses and reduced some inflammatory markers in both the ileum and liver compared to HoP-DM treatment. Our preliminary study suggests that the HHP processing of DM may better protect preterm infants from gut and liver pathologies compared to HoP, which is currently used in most human milk banks.

12.
Nutrients ; 14(10)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35631317

RESUMO

(1) Background: Type 2 diabetes (T2D) is associated with a duodenal hypermotility in postprandial conditions that favors hyperglycemia and insulin resistance via the gut-brain axis. Enterosynes, molecules produced within the gut with effects on the enteric nervous system, have been recently discovered and pointed to as potential key modulators of the glycemia. Indeed, targeting the enteric nervous system that controls gut motility is now considered as an innovative therapeutic way in T2D to limit intestinal glucose absorption and restore the gut-brain axis to improve insulin sensitivity. So far, little is known about the role of glucose on duodenal contraction in fasted and fed states in normal and diabetic conditions. The aim of the present study was thus to investigate these effects in adult mice. (2) Methods: Gene-expression level of glucose transporters (SGLT-1 and GLUT2) were quantified in the duodenum and jejunum of normal and diabetic mice fed with an HFD. The effect of glucose at different concentrations on duodenal and jejunal motility was studied ex vivo using an isotonic sensor in fasted and fed conditions in both normal chow and HFD mice. (3) Results: Both SGLT1 and GLUT2 expressions were increased in the duodenum (47 and 300%, respectively) and jejunum (75% for GLUT2) of T2D mice. We observed that glucose stimulates intestinal motility in fasted (200%) and fed (400%) control mice via GLUT2 by decreasing enteric nitric oxide release (by 600%), a neurotransmitter that inhibits gut contractions. This effect was not observed in diabetic mice, suggesting that glucose sensing and mechanosensing are altered during T2D. (4) Conclusions: Glucose acts as an enterosyne to control intestinal motility and glucose absorption through the enteric nervous system. Our data demonstrate that GLUT2 and a reduction of NO production could both be involved in this stimulatory contracting effect.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Animais , Glicemia/metabolismo , Glucose/metabolismo , Camundongos , Óxido Nítrico/metabolismo
13.
Metabolites ; 12(4)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35448490

RESUMO

Overweight, obesity, and their comorbidities are currently considered a major public health concern. Today considerable efforts are still needed to develop efficient strategies able to attenuate the burden of these diseases. Nutritional interventions, some with plant extracts, present promising health benefits. In this study, we evaluated the action of Camu-Camu (Myrciaria dubia), an Amazonian fruit rich in polyphenols and vitamin C, on the prevention of obesity and associated disorders in mice and the abundance of Akkermansia muciniphila in both cecum and feces. Methods: We investigated the dose-response effects of Camu-Camu extract (CCE) in the context of high-fat-diet (HFD)-induced obesity. After 5 weeks of supplementation, we demonstrated that the two doses of CCE differently improved glucose and lipid homeostasis. The lowest CCE dose (62.5 mg/kg) preferentially decreased non-HDL cholesterol and free fatty acids (FFA) and increased the abundance of A. muciniphila without affecting liver metabolism, while only the highest dose of CCE (200 mg/kg) prevented excessive body weight gain, fat mass gain, and hepatic steatosis. Both doses decreased fasting hyperglycemia induced by HFD. In conclusion, the use of plant extracts, and particularly CCE, may represent an additional option in the support of weight management strategies and glucose homeostasis alteration by mechanisms likely independent from the modulation of A. muciniphila abundance.

15.
Life Sci ; 298: 120494, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35339510

RESUMO

AIMS: Chronic kidney disease (CKD) produces multiple repercussions in the gastrointestinal tract (GIT), such as alterations in motility, gut microbiota, intestinal permeability, and increased oxidative stress. However, despite enteric glial cells (EGC) having important neural and immune features in GIT physiology, their function in CKD remains unknown. The present study investigates colonic glial markers, inflammation, and antioxidant parameters in a CKD model. MAIN METHODS: A 5/6 nephrectomized rat model was used to induce CKD in rats and Sham-operated animals as a control to suppress. Biochemical measures in plasma and neuromuscular layer such as glutathione peroxidase (GPx) and superoxide dismutase (SOD) activity were carried out. Kidney histopathology was evaluated. Colon morphology analysis and glial fibrillary acid protein (GFAP), connexin-43 (Cx43), nuclear factor-kappa B (NF-κB) p65, and GPx protein expression were performed. KEY FINDINGS: The CKD group exhibited dilated tubules and tubulointerstitial fibrosis in the reminiscent kidney (p = 0.0002). CKD rats showed higher SOD activity (p = 0.004) in plasma, with no differences in neuromuscular layer (p = 0.9833). However, GPx activity was decreased in the CKD group in plasma (p = 0.013) and neuromuscular layer (p = 0.0338). Morphological analysis revealed alterations in colonic morphometry with inflammatory foci in the submucosal layer and neuromuscular layer straightness in CKD rats (p = 0.0291). In addition, GFAP, Cx43, NF-κBp65 protein expression were increased, and GPx decreased in the neuromuscular layer of the CKD group (p < 0.05). SIGNIFICANCE: CKD animals present alterations in colonic cytoarchitecture and decreased layer thickness. Moreover, CKD affects the enteric glial network of the neuromuscular layer, associated with decreased antioxidant activity and inflammation.


Assuntos
Antioxidantes , Insuficiência Renal Crônica , Animais , Antioxidantes/metabolismo , Colo/metabolismo , Conexina 43/metabolismo , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Glutationa Peroxidase/metabolismo , Humanos , Inflamação/patologia , Masculino , Nefrectomia , Neuroglia/metabolismo , Ratos , Insuficiência Renal Crônica/metabolismo , Superóxido Dismutase/metabolismo
16.
Nutrients ; 14(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35011094

RESUMO

BACKGROUND: High hydrostatic pressure (HHP) processing is a non-thermal method proposed as an alternative to Holder pasteurization (HoP) for the sterilization of human breast milk (BM). HHP preserves numerous milk bioactive factors that are degraded by HoP, but no data are available for milk apelin and glucagon-like peptide 1 (GLP-1), two hormones implicated in the control of glucose metabolism directly and via the gut-brain axis. This study aims to determine the effects of HoP and HHP processing on apelin and GLP-1 concentrations in BM and to test the effect of oral treatments with HoP- and HHP-BM on intestinal contractions and glucose metabolism in adult mice. METHODS: Mice were treated by daily oral gavages with HoP- or HHP-BM during one week before intestinal contractions, and glucose tolerance was assessed. mRNA expression of enteric neuronal enzymes known to control intestinal contraction was measured. RESULTS: HoP-BM displayed a reduced concentration of apelin and GLP-1, whereas HHP processing preserved these hormones close to their initial levels in raw milk. Chronic HHP-BM administration to mice increased ileal mRNA nNos expression level leading to a decrease in gut contraction associated with improved glucose tolerance. CONCLUSION: In comparison to HoP, HPP processing of BM preserves both apelin and GLP-1 and improves glucose tolerance by acting on gut contractions. This study reinforces previous findings demonstrating that HHP processing provides BM with a higher biological value than BM treated by HoP.


Assuntos
Apelina/análise , Peptídeo 1 Semelhante ao Glucagon/análise , Glucose/metabolismo , Pressão Hidrostática , Leite Humano/química , Animais , Eixo Encéfalo-Intestino/fisiologia , Humanos , Íleus/metabolismo , Camundongos , Pasteurização
17.
Antioxid Redox Signal ; 37(4-6): 394-415, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34714099

RESUMO

Significance: The role of reactive oxygen/nitrogen species as "friend" or "foe" messengers in the whole body is well characterized. Depending on the concentration in the tissue considered, these molecular actors exert beneficial or deleterious impacts leading to a pathological state, as observed in metabolic disorders such as type 2 diabetes and obesity. Recent Advances: Among the tissues impacted by oxidation and inflammation in this pathological state, the intestine is a site of dysfunction that can establish diabetic symptoms, such as alterations in the intestinal barrier, gut motility, microbiota composition, and gut/brain axis communication. In the intestine, reactive oxygen/nitrogen species (from the host and/or microbiota) are key factors that modulate the transition from physiological to pathological signaling. Critical Issues: Controlling the levels of intestinal reactive oxygen/nitrogen species is a complicated balance between positive and negative impacts that is in constant equilibrium. Here, we describe the synthesis and degradation of intestinal reactive oxygen/nitrogen species and their interactions with the host. The development of novel redox-based therapeutics that alter these processes could restore intestinal health in patients with metabolic disorders. Future Directions: Deciphering the mode of action of reactive oxygen/nitrogen species in the gut of obese/diabetic patients could result in a future therapeutic strategy that combines nutritional and pharmacological approaches. Consequently, preventive and curative treatments must take into account one of the first sites of oxidative and inflammatory dysfunctions in the body, that is, the intestine. Antioxid. Redox Signal. 37, 394-415.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Nitrogênio , Obesidade/metabolismo , Oxigênio/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
18.
Neuropharmacology ; 197: 108721, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34274348

RESUMO

For the last 20 years, researchers have focused their intention on the impact of gut microbiota in healthy and pathological conditions. This year (2021), more than 25,000 articles can be retrieved from PubMed with the keywords "gut microbiota and physiology", showing the constant progress and impact of gut microbes in scientific life. As a result, numerous therapeutic perspectives have been proposed to modulate the gut microbiota composition and/or bioactive factors released from microbes to restore our body functions. Currently, the gut is considered a primary site for the development of pathologies that modify brain functions such as neurodegenerative (Parkinson's, Alzheimer's, etc.) and metabolic (type 2 diabetes, obesity, etc.) disorders. Deciphering the mode of interaction between microbiota and the brain is a real original option to prevent (and maybe treat in the future) the establishment of gut-brain pathologies. The objective of this review is to describe recent scientific elements that explore the communication between gut microbiota and the brain by focusing our interest on the enteric nervous system (ENS) as an intermediate partner. The ENS, which is known as the "second brain", could be under the direct or indirect influence of the gut microbiota and its released factors (short-chain fatty acids, neurotransmitters, gaseous factors, etc.). Thus, in addition to their actions on tissue (adipose tissue, liver, brain, etc.), microbes can have an impact on local ENS activity. This potential modification of ENS function has global repercussions in the whole body via the gut-brain axis and represents a new therapeutic strategy. This article is part of the special Issue on 'Cross Talk between Periphery and the Brain'.


Assuntos
Eixo Encéfalo-Intestino , Sistema Nervoso Entérico/fisiopatologia , Microbioma Gastrointestinal , Doenças Neurodegenerativas/microbiologia , Doenças Neurodegenerativas/fisiopatologia , Animais , Sistema Nervoso Entérico/microbiologia , Humanos , Doenças Neurodegenerativas/psicologia
19.
Cell Metab ; 33(6): 1073-1075, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34077715

RESUMO

Akkermansia muciniphila is a gut commensal known to improve host metabolism. The outer membrane protein Amuc_1100 has been shown to partially replicate these beneficial effects. Here, Yoon et al. (2021) have identified a novel protein (P9) secreted by A. muciniphila that stimulates GLP-1 secretion, thereby adding new insight to the biomolecule era to treat metabolic diseases.


Assuntos
Peptídeo 1 Semelhante ao Glucagon , Doenças Metabólicas , Akkermansia , Humanos , Proteínas de Membrana , Fatores de Transcrição
20.
Front Pain Res (Lausanne) ; 2: 613187, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35295482

RESUMO

Background: Peritoneal carcinomatosis often results in alterations in intestinal peristalsis and recurrent abdominal pain. Pain management in these patients is often unsatisfactory. This study aimed to investigate whether endothelin-1 (EDN1) was involved in pain mediation in peritoneal carcinomatosis, and thus whether the EDN1 pathway could be a new therapeutic target for peritoneal carcinomatosis-associated pain. Methods: EDN1 plasma levels and abdominal pain severity were assessed in patients with abdominal tumors, with or without peritoneal carcinomatosis, and in healthy donors. The effects of EDN1 on the visceromotor response to colorectal distension, and on colonic contractions were then examined in mice, and the mechanism of action of EDN1 was then investigated by measuring the impact of EDN1 exposure on calcium mobilization in cultured neurons. Inhibition studies were also performed to determine if the effects of EDN1 exposure could be reversed by EDN1-specific receptor antagonists. Results: A positive correlation between EDN1 plasma levels and abdominal pain was identified in patients with peritoneal carcinomatosis. EDN1 exposure increased visceral sensitivity and the amplitude of colonic contractions in mice and induced calcium mobilization by direct binding to its receptors on sensory neurons. The effects of EDN1 were inhibited by antagonists of the EDN1 receptors. Conclusions: This preliminary study, using data from patients with peritoneal carcinomatosis combined with data from experiments performed in mice, suggests that EDN1 may play a key role mediating pain in peritoneal carcinomatosis. Our findings suggest that antagonists of the EDN1 receptors might be beneficial in the management of pain in patients with peritoneal carcinomatosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...